848 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003

Finite-Element Method Coupled With Method
of Lines for the Analysis of Planar or
Quasi-Planar Transmission Lines

Hao-Hui Chen, Member, |EEE

Abstract—A full-wave analysisincor por ating the finite-element
method (FEM) and the method of lines(MoL) is presented in this
paper to investigate a planar or quasi-planar transmission-line
structure containing complex geometric/material features. For
a transmission-line structure being considered, the regions
containing complex media are modeled by the FEM while those
consisting of simple media with simple geometry are analyzed
using the MoL. From the field solutions calculated by MoL, the
boundary conditions are constructed. The boundary integrals
involved in finite-element analysis are then carried out using
these boundary conditions. Since the finite-element analysis is
employed only in the complex parts of the structures, while other
parts are handled by the MoL, this approach not only retainsthe
major advantage of the FEM in simulating complex structures but
also becomes more efficient than the conventional finite-element
analysis. Good agreement between the calculated resultsand those
reported in the available literature is obtained and thus validates
the present approach. Furthermore, proficient computational
efficiency of thismethod is demonstrated by examining its conver -
gence property. Finally, a number of relevant transmission-line
structures are analyzed to illustrate the applications of this
approach.

Index Terms—Complex features, finite-element method (FEM),
method of lines(MoL), planar/quasi-planar transmission lines.

I. INTRODUCTION

LANAR or quasi-planar transmission lines such as

microstrip lines, coplanar waveguides, and dielectric
waveguides have been widely used in microwave and mil-
limeter-wave integrated circuit systems. In some applications,
the transmission lines may be designed with complex geo-
metric parameters and/or contain inhomogeneous materials.
For example, abrupt or inhomogeneously doped semiconductor
substrates have been used to improve the quality factor and the
slow-wave characteristics of metal—nsulator—semiconductor
(M1S) transmission lines [1]{4]. Conductors with finite
thickness and nonrectangular edge profile, which result from
the underetching or electrolytical growth during the fabrication
process, are often present in monolithic microwave integrated
circuits (MMICs) or high-speed interconnects. To obtain an
accurate and reliable prediction of the circuit performance, the
effects due to the variation of conductor thickness and edge
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profile should be carefully considered [5]—{8]. In addition, mi-
cromachined microwave transmission lines such as membrane
microstrips [9], [10], micromachined coplanar waveguides
[11]-{13], V- and W-shaped shielded microstrip lines[14], and
overlay coplanar waveguides [15], [16], have been developed
recently for microwave and millimeter-wave applications. The
micromachined transmission lines, which are designed using
selectively etched substrates or partially elevated conductors,
can be fabricated in various microwave circuit systems to
increase the circuit performance and reduce size and cost [17].

Rigorous full-wave analysis of transmission-line structures
containing complex geometric/material features can be carried
out using several numerical techniques. There have been papers
reported that using the finite-element method (FEM) [1],
method of lines (MoL) [2], transmission-line matrix (TLM)
method [3], and mode-matching technique in conjunction with
Galerkin’s method [4], [18], [19] to investigate the propagation
characteristics of microstrips and coplanar waveguides fabri-
cated on an inhomogeneous substrate. In addition, the effects of
conductor thickness and edge profile on transmission properties
were studied by the boundary integral equation method [5],
the spectral-domain approach (SDA) [6], and FEM [7], [8].
Moreover, the conformal mapping method (CMM) [11], the
finite-difference time-domain (FDTD) technique [10], and
FEM [14] have been applied to analyze various micromachined
transmission lines and circuits.

Of all the various numerical methods, discretization ap-
proaches like FEM or FDTD may be the most powerful and
versatile techniques for handling waveguide problems having
complex geometric/material parameters. By discretizing the
problem domain appropriately, these approaches can effectively
model complex geometric and material features. However,
when highly accurate results are pursued, they normally require
large computer memory and will entail massive CPU time
consumption.

Ontheother hand, theMoL isregarded asaspecial discretiza-
tion technique but more efficient in computation as compared
with other regular discretization approaches. For a two-dimen-
sional (2-D) problem, the domain isfirst partitioned into layers.
Differential equations are then discretized in one direction (the
direction paralld to the interfaces of layers) while solving the
other one analytically. Theformulation using the semianalytical
procedure would substantially reduce the number of unknowns
and save a great deal of computing time. However, this method
requires the materialsin each layer to be at least piecewise uni-
form aong the discretization direction because it uses severa
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Fig. 1. Transmission-line structure containing complex geometric/material
features.

straight lines to divide the problem domain. When a complex
structure isinvolved, this method may not be applicable.

In this paper, a full-wave approach incorporating the FEM
and the MoL (FEM—MoL) is proposed for the analysis of planar
or quasi-planar transmission lines. In the FEM—MoL analysis
of a structure containing complex geometric/material features
(such as the example shown in Fig. 1), the regions containing
complex features (such as nonrectangular metal strips) are in-
vestigated by the FEM. The MoL isthen applied to analyze the
regions consisting of simple media with simple geometry (such
as the stratified homogeneous substrate layers). From the field
solutions calculated by the MoL, the boundary conditions over
the boundaries of the complex regions are constructed. After-
wards, the boundary integrals involved in finite-element anal-
ysis can be carried out using these boundary conditions.

In this FEM—-MoL analysis, since the complex regions are
modeled by the FEM, advantages associated with the FEM in
simulating complex features are retained. Furthermore, due to
the fact that 2-D discretization of finite-element analysisis em-
ployed only in certain parts of the problem domain while other
parts are handled by one-dimensional (1-D) discretization fol-
lowing theanalysisof MoL, thisapproach is superior to the con-
ventional finite element analysis—in which 2-D discretization
is adopted in the entire problem domain, causing a lower com-
putational efficiency.

The remainder of this paper is organized as follows. Sec-
tion Il derives the formulation of the FEM—MoL analysis. In
Section |11, the validity of the calculated results is compared
to the existing literature. Also, the computational efficiency of
the proposed approach is discussed. The numerical results for
a number of relevant transmission-line structures are then pre-
sented and discussed. Finally, abrief conclusion of this paper is
presented in Section V.

Il. FORMULATION

To illustrate the procedure of formulating the proposed ap-
proach, the transmission-line structure as shown in Fig. 1 will
be analyzed in this section. As to the structure under investiga-
tion, there appears a selectively etched dielectric substrate and
the metal stripsare of arbitrary cross section. Also, the structure
isdesigned enclosing with rectangular perfect electricwallsand
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Fig. 2. Discretization schemes for the FEM—MoL analysis of the structure
shown in Fig. 1. The FEM regions are discretized by triangular elements. The
Mol regions are discretized by e-lines and h-lines (solid and dashed vertical
linesin MoL regions).

is assumed to be uniform in the z-direction. According to the
complexity of the geometries and materials, the whole structure
is segmented into variousregions. Regions L1, L2, and L3, de-
finediny € (0, y1), (42, ¥s), and (y4, B), are composed of
stratified homogeneous dielectric layers. The fieldsin these re-
gionswill be calculated by the MoL.. On the other hand, regions
El and E2, defined iny € (y1, y2) and (ys, y4), cONtain ma-
terials of complex geometry. These regions to be characterized
using complex geometric/material parameters will be modeled
by the FEM.

According to the discretization schemes of FEM and MoL,
the entire problem domain is discretized using several elements
and straight lines, as shown in Fig. 2 (the materiasin the struc-
ture are not depicted for clarity). The regions £1 and E2 re-
ferred asthe FEM regions and they are discretized by triangular
elements. Theregions L1, L2, and L3, which are discretized by
e-lines (solid vertical lines) and A-lines (dashed vertical lines),
referred as the Mol regions. Also, the interfaces between the
FEM and MoL regions (y = w1, %2, %3, and y4, See Fig. 1)
are denoted by the boundaries I'; (i = 1, 2, 3, 4). Since we
are interested in modes propagating in the z-direction, it is as-
sumed that the time-harmonic dependence and the guided-wave
z-dependence of the electromagnetic fields in the structure are
exp(jwt) and exp(—jSz), respectively, where w is the angular
frequency and /3 is the propagation constant to be determined.
Inwhat follows, Sections|1-A and B briefly describe the proce-
dures of FEM and MoL. Section |1-C explains how to incorpo-
rate the solutions of MoL into those of FEM, and then system
matrix equations are derived.

A. Finite-Element Matrix of FEM Regions

Referring to the FEM regionsin Fig. 2, the electric field Ein
these regions is governed by the vector Helmholtz equation

VXLVXE:%&E (1)

Hr
where k isthe wavenumber in free space and «,. and p.,- denote
the relative permittivity and relative permeability of the mate-
rigl, respectively. By dividing the el ectricfi gld intg itstransverse
(F}) and longitudinal (F.) components, £ = F, + 2E. (2 is
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an unit vector in the z-direction), and by adopting the variable
transformation introduced in [20]{23]

& =pBE, ¢.=—jE. o)
the Helmholtz equation can be split into its transverse and lon-
gitudina parts and expressed in terms of the auxiliary variables
(Etv ez)'

Following the finite-element analysis, the FEM regions are
divided into a number of triangular elements. Within each ele-
ment, thefields e, and ¢, are approximated by aset of first-order
(Iinear) vectorial and nodal shatoefunctions, respectively, thatis,
G = Z ¢><€)N(€ ande, = Z ¢><€')L(€') The superscript (¢)

=1
denotestheeth element N( ©) and L( ©) arethelinear shapefunc-
tions. Also, ¢> and ¢>( °) are the tangential and nodal unknown
expansion coeff|C| ents. Using the finite-element expansionsand
applying theweight residual method (WRM) [22]24], wethen
obtain the following elemental matrix equations:

AP+ [BY] 2B 1407 [P
# [BY)] 7 [BY)] Lﬁﬁf’] ! [P@] -
3

where [A], [B], [BL], [BY], and [B()] are the local ma-
trices resulted from the surface integrations of the quantitiesin
relation to the shape functions in the weighted residual equa-
tions. The entries of these matrices are available in basic FEM
texts (e.g., [22]{24]). ¢\ and ${*) are column vectors with
components being the coefficients ¢> ) to ¢>(€) and ¢> °) to ¢>£§),
respectively. Furthermore, the components of the column vec-

tors P and Pt are given by the line integrals

PP =-kog § (B xhz)ad, i=123
()

PY) = ko8 74 (L2 xB) hat, =123 @
T(e)

where T'(¢) represents the boundary of the element (e). The
vector n denotesthe outward normal unit vector to the boundary
(). In(4), theauxiliary fields i, and h. arerelated tothetrans-
verse and longitudinal magnetic fields H, and H. viathetrans-
formation

ht = 7/IOI—It hz = _jUOHz (5)
where 7y is the intrinsic impedance of free space.

The contributions of the line integrals depend upon the
location of the integration’s contour. There are three situations
that occurred that need to be addressed. First, in case the contour
situatesat theleft or right electric walls of the enclosure. Second,
when it is shared between two adjacent elements. Third, if
it borders at the interfaces between FEM regions and MoL
regions (I'y, I's, I'3, and T'y, in Fig. 2). For the first case,
the line integral would vanish due to the boundary conditions
at the conducting surfaces. As for the second occurrence,
since the outward normal vectors of two adjacent elements are
opposite, the contributions resulting from the two elements
would annihilate each other when they are assembled. Only
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Fig. 3. lllustration of the discretization over the boundary I";. The solid and
dashed linesin region L1 are e-lines and h-lines, respectively.

the line integrals of the third case should be included in the
final equations. Therefore, the presence of the line integra
vectors PS’) and Pgﬁ) are required only if the element (¢) has
an edge bordering at the boundary I';, (i =1, 2, 3, 4). In this
scenario, the line integrals over the closed contour I'¢¢) can be
replaced by those integrated along the edge on the boundary.
To evaluate the line integrals associated with I'y, let us con-
sider the element (m) shown in Fig. 3. The element (m) has an
edget1 located at theboundary I'; . Two endpointsof edget1 are
numbered as nodes »1 and z2. Since the outward normal vector
n onedgetlis—g, only k. and h, (thetangential components
of A field) are needed to perform the line integral (4) over the
edge. Using the linear finite el ement expansions with respect to
the electric fieldsin element () along with the Maxwell
tions, one can approximate 1. on edge¢1 to be aconstant \™
whereas h,, to be {7 and 47" at nodes 1 and ~2 with linear
variation along the edge. The fields ., and /. a edge ¢t1 are
then written as

hz _ 1/)2771) h _ 1/}(771)L(7n) + d(nl)L(nl) (6)

where L{™ and L™ are the nodal shape functions relative to
the nodes »1 and 22 of the element (m).

Substituting (6) into (4) and using the features of the linear
shape functions (]\7 ™) and ]\7 (™) directed along the y-direction
at edge 1, and L<m) vanishes along edge 1), the line integral
vectors of the element (m) (P™ and P{™) can be evaluated
by performing the integrals over edge ¢1, to be expressed as

R 0 0 1/}2771)
Pirn):_koﬁ 0 0 O 0
0 0 O 0
w(m)
ko |20 0 o
P =P =7 | R 2R 0| g b (7)
0 0 0 '()

where R is the length of edge ¢1. In (7), the vector P{™ is
referred as P{™) to indicate that it results from the field h,, at
edge #1. The elemental matrix equations of the element (m) are
then obtained by (3) and (7). Also note that in the element (m),
the expansion coefficient ¢, 1’) = ¢>( represents the field e,
along edge t1, while ¢><m) and ¢>(m) represent ¢ at nodes z1
and 22.
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For other elements which have an edge adjacent to the
boundary I';, and those that have an edge bordering at the
boundary I's, I's, or 'y, a similar treatment can be applied to
calculate the elemental matrix equations. Finaly, by assem-
bling the contributions from all the elements, we can obtain a
system equation for the FEM regions

(( br )
Din E1
[[SEl] } ¢r2
[S k2] ér,
Din E2
\ or, J
C (%r, ) )
0
[CE1] ?r,
o vy [0 ©
0
(e, )

where the submatrices [Sg1] ([Cr1]) and [Sg2] ([Cr2]) ae
the surface (line) integral matrices assembled from the contri-
butions of the elementsin the regions £'1 and E2, respectively.
The vectors ¢;,, ;1 and ¢, o represent the unknown expan-
sion coefficients of &' field in the interior of regions £1 and E2.
Also, the vector ¢-. and 9. (z = 1, 2, 3, 4) stand for the tan-
gential components (xz and > components) of ¢ field and k field
at the boundary T';. ¢, and 9. are written as

[ &, } B {"/)zl—‘g } 9
4 = { AR M ©
where the vectors ¢_r. and 1. represent the values of the
fieldse. and h,, at thenodes, and ¢,-, and 4_-, represent those
of thefields e, and k. aong the line segments (edges) at I';.
In the system of (8), the number of unknowns is larger than
that of equations (due to the presence of unknowns ). Also,
the unknowns are only associated with some parts (the FEM
regions) of the whole problem domain. To take other parts (the
MoL regions) into consideration, we next utilizetheMoL to cal-
culate the fields in the MoL regions. Another set of equations,
which correlate ¢ with ¢, will be formulated using the so-
Iutions obtained from the MoL.

B. Field Equations of MoL Regions

The MoL regionsin Fig. 1 are composed of stratified homo-
geneous dielectric layers. These multilayered structures can be
efficiently analyzed using the MoL. The procedure for applying
the MoL to multilayered structures has been discussed much in
the literature. According to the formulation of this technique,
the problem domain of a multilayered structure under analysis
is discretized in the x-direction by severa e-lines and h-lines
(see the discretization schemes for the MoL regions shown in
Fig. 2). The field components £, E., and H, are then sam-
pled at the e-lines, whereas £, H,,, and H. are sampled at the

h-lines. By applying several mathematical transformations, the
fields in each dielectric layer of the structure are transformed
into the transform domain, which can be evaluated analytically
at the discrete lines [25].

With the field solutions, the transformed tangential fields
(E. . and H, .) a the lower and the upper interfaces of an
arbitrary dielectric layer are related by

{Ha}_ [y2]:|{ Ea}
H, ]l L —E,
Wltﬁ Ha,b = UO{_sza,ba Ha:a,b}tu Ea,b = {Ea:a,bu
—jE., }'. Here we use the subscripts a and b to denote,
respectively, the lower and the upper interfaces of the investi-
gated layer. The transfer matrices [, | and [y,] are defined the
same as those in [25].

Using the continuity conditions of the tangential fields at the
interfaces of adjacent layers, the field equations (10) of each
layer are combined to correlate the tangentia fields at the top

boundary of the multilayered structure with those at the bottom
boundary. This leads to the following equations:

(m)=\v wal{s)
Hpg [Ys] [Y4] —-Ep
The interface matrices [Y;] (j = 1, 2, 3, 4) can be readily
calculated by a simple recurrence manipulation of the transfer
matrices([g, ] and [g,] in (10)) for each layer [25]. The subscripts
A and B denote the bottom and the top boundaries of the
multilayered structure.

The field equations (11) describe the boundary conditions at
the bottom and the top boundaries of a multilayered structure.
It isworth noting that the interface matrices [Y ;] are composed
by four (quasi-)diagona matrices. Minimal computing timeand
computer memory are required by this formulation. Applying
MoL to investigating the MoL regions, one obtains the field
equations (11) for the regions L1, L2, and L3. The boundary
conditions at the boundaries I';, (i = 1, 2, 3, 4), can be then
formulated from these field equations.

Before the end of this subsection, it should be pointed out that
in the FEM—MoL approach, the discretization schemes for the
MoL regions, that is, the positions (z-coordinates) of the e-lines
and h-lines, are based on the FEM meshing on the boundaries
I';. The discretization applied in region .1 is explained here as
an example. As seen in Fig. 3, the interface between regions
L1 and £1 (boundary I'1) isdivided into several line segments
by finite element discretization in region E'1. The e-lines and
h-linesare placed, respectively, at the positions of endpointsand
midpoint on each line segment to divide the domain of region
L1. Asillustrated in the following, this discretization schemes
would appropriately incorporate the field equations of the MoL
regions into the system equation of FEM regions. Similar dis-
cretization schemes can be applied to the regions L2 and L3. A
nonequidistant discretization may be required in the analysis of
MoL. In such acase, suitable normalization manipulations [25]
should be employed in the analysis.

4 W

(2]

(11)
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C. System Equations of the Whole Structure

After obtaining the field equation (11) for all MoL regions,
the boundary conditions at the bottom and the top metal shield-
ings of the structure are inserted into (11) for regions L1 and
L3, respectively. Transforming the field equations back into the
spatial domain, the boundary conditions at theboundariesI; are
determined, which can be expressed in the form

= ),
(e 1= L v { o)
{Hr,} =[Y{*|{Er,}.

The matrices [Y}*], (j = 1, 2, 3, 4,and k = 1, 2, 3) arecal-
culated from the inverse transforming of the interface matrices
([Y,] in (11)) associated with the region Lk. The vectors Er,
and Hr, (: = 1, 2, 3, 4) are related to the tangential fields at

the boundary I"; with

Ea:,l"; _sz,F;
_jEz,Fi HQZ‘,F{

(12)

1

Since the field components £, and H,. are sampled at e-lines,
it is clear from the discretization schemes for the MoL regions
that the components of the vectors £, r, and H. r, represent
the fields £, and H, at the nodes on I'; (the intersections of
e-linesand I';). Similarly, the fields £, and H. are sampled at
h-lines, the components of the vectors £, r, and H_ r, thus
denote the fields £, and H.. at the middle points of the line
segments, or the fields along the line segments, on I';.

Next, using the variable transformation (2) and (5), the tan-
gential fields £, . and H,, . at the boundaries I'; (which are
represented by the vectors Er-, and Hr, (13) in the MoL anal-
ysis) are transformed into the auxiliary variables e, . and ., -
(which are represented by the vectors ¢, and 4, (9) in the
FEM analysis). Thevectors Er-, and Hr, can then be expressed
in terms of vectors ¢ and 9. as

EW:F{ /j_lqﬁx T, }
Er, = _ o |
I; { —JE. T, } { ¢z,1"7- [Q]{¢r7}
—‘jUOHZ’ X "/)z r; }
Hr = _ , _
: { noHo,r, } {¢T - Yr,
3=111 0
Q= [/ ] }

0

where [1] is the unit matrix. Substituting (12) and (14) into (8),
wefinally obtain thefollowing nonstandard eigenval ue equation
to the problem:

(14)

[F(P)He} = 0.

In order to get nontrivial solutions for the coefficient vector ¢,
the determinant of system matrix [F] should be zero. By solving
the determinantal equation viavariousroot searching algorithms
such asthe Muller’ smethod or the singular val ue decomposition
technique [26], the propagation constants /3 are obtained. With
3 dready known, al guided fields are explicitly calculable, and
other electric characteristics (e.g., theimpedance) can be further
computed.
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Fig.4. Normalized propagation constant as afunction of frequency for athick
microstrip structure. Structural parametersare A = 10.0 mm, B = 6.985 mm,
w=3.0mm, h =0.635mm, ¢ = 0.3 mm,and ¢, = 9.8. Lines: FEM—-MoL
approach. Dots: Alam et al. [7].

In the FEM—MoL analysis of this example, the problem do-
main is segmented into two FEM and three MoL regions. For
the analysis of a more complex structure, additional FEM and
MoL regions can be applied. The equations of the FEM regions
and those of the MoL regions can be combined using the pro-
cedure described above to acquire the system equations to the
problem.

I1l. NUMERICAL RESULTS

In this section, the numerical resultsfor avariety of transmis-
sion-line structures are presented. For all examples considered,
the media are assumed lossless, isotropic, and nonmagnetic
(1+» = 1). Also, nonuniform discretization schemes that re-
finedly discrete the areas in which the fields can change rapidly
by smaller elements and/or closer spaced lines are employed
in the analyses.

Tovalidatethe proposed formulation, athick microstrip struc-
ture with rectangular or trapezoidal metallization cross section
(see theinset of Fig. 4) is investigated to compare our results
with those available in the existing literature. Fig. 4 shows the
propagation characteristics of the rectangular strip (¢ = 90°)
and those of the trapezoidal ones (¢ = 45° and 135°). There-
sults obtained from our approach (represented by the solid lines)
are in excellent agreement with those calculated by Alam et
al.using a standard finite-element approach [7] (marked by the
dots). In the FEM—-MoL analysis, the FEM region is defined in
y € (h, h+1t),1.e, thelayer containing the metal strip. The sub-
strate layer (y € (0, 1)) and the air layer above the metal strip
(y € (h+t, B)) are defined as MoL regions. Note that the
FEM region (which is handled by 2-D discretization) occupies
only about 4.29% of the whole problem domain. It is expected
that the computational performance of the proposed approach
would be much more efficient than that of the conventional fi-
nite element method (in which 2-D discretization is adopted to
the entire problem domain).

In order to investigate the computational performance of the
FEM-MoL analysis, the convergence property of thistechnique
in analyzing the microstrip structure with rectangular metal strip
considered in Fig. 4 at 20 GHz is examined and compared with
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Fig. 5. Convergence properties of the normalized propagation constants
computed by the FEM—MoL and conventional FEM analyses. The structure
under test is the microstrip structure with a rectangular metal strip shown in
Fig. 4 at 20 GHz. The number of divisionsin the x -direction V. is 78 for al
three analyses.

that of the conventional FEM. Two FEM—-MoL formulations,
referred as FEM—MoL | and FEM-MoL I, areimplemented in
the convergence study to reveal theflexibility of thismethod. In
FEM—MoL I, the problem domain is segmented into one FEM
(y € (h, h+ 1)) andtwo MoL (y € (0, h) and (h + ¢, B))
regions. While in FEM-MoL II, two FEM (y € (2t/3, 5t/3)
and (h, i + t)) and three MoL (y € (0, 2¢/3), (5t/3, h), and
(h + ¢, B)) regions are used. The conventional FEM can be
treated as a specidl FEM—MoL implementation of which the
whole problem domain is defined as the FEM region since it
uses the finite el ement method to handle the whole structure. In
the calculation, the FEM regions of each implementation are
first divided into NV, x N, rectangular elements, where NV,
and N, are the number of divisionsin the - and y-directions.
Each rectangular element is later divided into two triangular -
ements. The MoL regions (for FEM—MoL | and Il analyses) are
then discretized by lines according to the discretizing procedure
stated in Section 11-B. Under these discretization schemes, the
number of variables computed in the FEM—MoL I, I1, and the
conventional FEM are, respectively, 4N, N, + 2N, — 2N, — 1,
4NN, + 4N, — 2N, — 2, and 4N, N, — 2N, — 2N, + 1
(including the variables associated with the fields on the metal
strip, which can be excluded when the strip istreated asa PEC).

Fig. 5 presents the convergence curves of the normalized
propagation constants as a function of V,. The data of these
three implementations are cal cul ated using the same x-direction
discretization pattern with NV, = 78 (which has been found
to be large enough to achieve the convergence with respect
to NV, for al three analyses). As can be seen in the graph,
the curves of the three analyses converge to the same value
(8/ko = 2.960). However, the FEM—MoL technique requires
fewer y-direction divisions to converge the data than does the
conventional FEM. The converged result is achieved with at
least 11 y-direction divisions through the conventional FEM,
whereas the same result can be obtained by the FEM—MoL |
using only three y-direction divisions. This clearly indicates
that a much fewer number of variables are needed to obtain
an accurate result by using the FEM—MoL technique. In this
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Fig. 6. Membrane-supported microstrip line.

example, the number of variables computed in the FEM-MoL
| after eliminating those on the metal strip is about 20% of that
in the conventional FEM. Due to the decrease of the number
of variables, the computing time is reduced. Nevertheless,
it should be mentioned that in the conventional FEM the
problem can be formulated as a standard eigenvalue problem
with the propagation constant being the eigenvalue, whereas
the FEM—-MoL approach will result in a determinantal matrix
equation since the propagation constant cannot be factored
from the matrices accounted for the MoL regions. Also, unlike
the finite-element analysis that would lead to a sparse matrix,
the system matrix resulting from the FEM—-MoL technique is
partly sparse and partly full. Some efficient matrix techniques
[20], [24] that are usually adopted in the finite-element analysis
to improve the computational efficiency would be therefore no
longer applicable in the FEM-MoL technique.

In the following, a microstrip line with an air cavity under-
neath the supporting membrane is considered. The configura-
tion of the membrane-supported microstrip line is illustrated
in Fig. 6, where an air cavity is etched on a silicon substrate
using micromachining techniques[9], [10],[12],[17]. Theside-
walls of the cavity arealigned tothe (111) silicon crystal planes
with the sidewall angle 6 being 54.7° [12]. In the FEM—MoL
analysis of this structure, the region containing the air cavity
(y € (h—d, h)) and that containing the metal strip (y €
( + humy, b+ hy, + 1)) are defined as the FEM regions. Other
parts of the structure are specified as the MoL regions.

Fig. 7 presents the effective dielectric constants of the mem-
brane-supported microstrip line. The results obtained from the
case without an air cavity (G = 0) are also presented in Fig. 7
for comparison. The arrows along with the plot are used to
indicate the increase of cavity depth d. The increment of either
the cavity width G or the depth d results in the reduction of
the effective dielectric constants because the electric field in
the silicon substrate is reduced. Furthermore, the air cavity is
observed to improve the dispersive propagation characteristics
of the microstrip. The dependence of the propagation charac-
teristics on frequency decreases apparently as the cavity size
(G or d) is increased. In the case of G = 2w, the effective
dielectric constants are nearly independent to the operating
frequency, indicating that the membrane-supported lines have
amost zero dispersion. Although not shown here, it has also
been found that when the cavity width G increasesto an extent
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Fig. 7. Effective dielectric constant as a function of frequency for a
membrane-supported microstrip line. Structural parameters are in Fig. 6,
A=12mm,w=0.2mm,h =0.3 mm, h,, = 0.005 mm, ¢ = 0.001 mm,
B =0.605 mm, &,y = 11.7,6,0 = 4,and 6 = 54.7°,
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Fig. 8. Micromachined coplanar waveguide.
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larger than the strip width w at a given cavity depth d, the
effective dielectric constant tends to converge to a stable value.
When G is larger than 2w, the effective dielectric constant
remains nearly unchanged after further increase in G. This
reflects the fact that most of the fields concentrate in the region
underneath the strip.

Asafinal example, let us consider amicromachined coplanar
waveguide [13], [17] packaged in a metallic enclosure. Fig. 8
depicts the structure to be studied. In thisline, the silicon mate-
rials in area underneath the apertures between the conductors
are removed by wet etching using EDP (anisotropic etch) or
HF/Nitric (isotropic etch) [9], [10], [13], [17]. As a result, an
air groove is formed below the aperture. The sidewall angle of
the air groove 6 is 54.7°. In the FEM—-MoL analysis, the FEM
and MoL regionsare, respectively, definediny € (h—d, h+1)
andy € (0, h —d), (h+1t, B).

Since the éectric fields concentrate in the apertures be-
tween the conductors, the removal of the materials underneath
the apertures would lower the effective dielectric constant.
Furthermore, the lower effective dielectric constant can lead
to a lower line capacitance that increases the characteristic
impedance [17]. Figs. 9 and 10 demonstrate the influence of the

r trapezoidal groove
triangular groove

Effective Dielectric Constant €

G=2s
ol v by v b by b B B

10 20 30 40 50 60 70
Groove Depth 4 (Um)
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Fig. 9. Effective dielectric constant as a function of groove depth for a
micromachined coplanar waveguide. Structural parameters are in Fig. 8,

A =0.32mm, B =0.5mm,w = 0.05 mm, s = 0.045 mm, A = 0.3 mm,
t = 0.00lmm, g, = 11.7,and 8 = 54.7°.
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Fig. 10. Characteristic impedance as a function of groove depth for a
micromachined coplanar waveguide. Structural parameters are in Fig. 8,
A =0.32mm,B = 0.5 mm, w = 0.05 mm, s = 0.045 mm, A = 0.3 mm,
t=0.001mm, e, = 11.7,and 8 = 54.7°.

air grooves on the effective dielectric constant and the charac-
teristic impedance, respectively. In both figures, the solid lines
represent the results for the cases of the groove with trapezoidal
cross sections (isotropically etched profile), and the dashed
line represents those for the cases of the triangular groove
(anisotropically etched profile). There are three isotropic cases
with different groove widths (G = 0.5s, s, and 2s) to be
considered here. Also, the groove width G for the anisotropic
case depends on the groove depth d with an angle of 54.7°.

For the cases of trapezoidal groove, it can be seen that the
effective dielectric constant decreases and the characteristic
impedance increases with increasing groove depth d. When
the depth d approaches the limit value of (G/2)tan(54.7°),
the characteristic values tend to converge to those relating to
the case of triangular groove. Also, it is noticed that when the
groove width G islarger than the aperture width s, the charac-
teristic values would change drastically as the groove depth d
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increases by a small amount from d = 0. In regard to the cases
of triangular groove, the effective dielectric constant decreases
and the characteristic impedance increases monotonously when
the depth (thus the width) of the groove is enlarged.

IV. CONCLUSION

A full-wave approach incorporating the FEM and the MoL
has been presented to efficiently analyze aplanar or quasi-planar
transmission-line structure containing complex geometric/ma:
terial features. In this work, when a transmission-line structure
isanalyzed, the complex regionsin the structure are model ed by
the FEM, while the ssmple regions are analyzed using the MoL .
Using the field solutions obtained from the MoL, the boundary
conditions are constructed and utilized to carry out the boundary
integrals involved in finite-element analysis. It not only retains
the major advantage of finite element method in modeling com-
plex structures but also is more efficient than the conventional
finite element analysis. Thevalidity of the present approach was
confirmed by conducting the comparative study as well as the
convergence analysis. Moreover, good computational efficiency
of this method was observed from the convergence property of
this method. Finally, the propagation characteristics of mem-
brane-supported microstrip lines and micromachined coplanar
waveguides were also investigated and demonstrated with satis-
factory applicability.
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