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Finite-Element Method Coupled With Method
of Lines for the Analysis of Planar or

Quasi-Planar Transmission Lines
Hao-Hui Chen, Member, IEEE

Abstract—A full-wave analysis incorporating the finite-element
method (FEM) and the method of lines (MoL) is presented in this
paper to investigate a planar or quasi-planar transmission-line
structure containing complex geometric/material features. For
a transmission-line structure being considered, the regions
containing complex media are modeled by the FEM while those
consisting of simple media with simple geometry are analyzed
using the MoL. From the field solutions calculated by MoL, the
boundary conditions are constructed. The boundary integrals
involved in finite-element analysis are then carried out using
these boundary conditions. Since the finite-element analysis is
employed only in the complex parts of the structures, while other
parts are handled by the MoL, this approach not only retains the
major advantage of the FEM in simulating complex structures but
also becomes more efficient than the conventional finite-element
analysis. Good agreement between the calculated results and those
reported in the available literature is obtained and thus validates
the present approach. Furthermore, proficient computational
efficiency of this method is demonstrated by examining its conver-
gence property. Finally, a number of relevant transmission-line
structures are analyzed to illustrate the applications of this
approach.

Index Terms—Complex features, finite-element method (FEM),
method of lines (MoL), planar/quasi-planar transmission lines.

I. INTRODUCTION

PLANAR or quasi-planar transmission lines such as
microstrip lines, coplanar waveguides, and dielectric

waveguides have been widely used in microwave and mil-
limeter-wave integrated circuit systems. In some applications,
the transmission lines may be designed with complex geo-
metric parameters and/or contain inhomogeneous materials.
For example, abrupt or inhomogeneously doped semiconductor
substrates have been used to improve the quality factor and the
slow-wave characteristics of metal–insulator–semiconductor
(MIS) transmission lines [1]–[4]. Conductors with finite
thickness and nonrectangular edge profile, which result from
the underetching or electrolytical growth during the fabrication
process, are often present in monolithic microwave integrated
circuits (MMICs) or high-speed interconnects. To obtain an
accurate and reliable prediction of the circuit performance, the
effects due to the variation of conductor thickness and edge
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profile should be carefully considered [5]–[8]. In addition, mi-
cromachined microwave transmission lines such as membrane
microstrips [9], [10], micromachined coplanar waveguides
[11]–[13], V- and W-shaped shielded microstrip lines [14], and
overlay coplanar waveguides [15], [16], have been developed
recently for microwave and millimeter-wave applications. The
micromachined transmission lines, which are designed using
selectively etched substrates or partially elevated conductors,
can be fabricated in various microwave circuit systems to
increase the circuit performance and reduce size and cost [17].

Rigorous full-wave analysis of transmission-line structures
containing complex geometric/material features can be carried
out using several numerical techniques. There have been papers
reported that using the finite-element method (FEM) [1],
method of lines (MoL) [2], transmission-line matrix (TLM)
method [3], and mode-matching technique in conjunction with
Galerkin’s method [4], [18], [19] to investigate the propagation
characteristics of microstrips and coplanar waveguides fabri-
cated on an inhomogeneous substrate. In addition, the effects of
conductor thickness and edge profile on transmission properties
were studied by the boundary integral equation method [5],
the spectral-domain approach (SDA) [6], and FEM [7], [8].
Moreover, the conformal mapping method (CMM) [11], the
finite-difference time-domain (FDTD) technique [10], and
FEM [14] have been applied to analyze various micromachined
transmission lines and circuits.

Of all the various numerical methods, discretization ap-
proaches like FEM or FDTD may be the most powerful and
versatile techniques for handling waveguide problems having
complex geometric/material parameters. By discretizing the
problem domain appropriately, these approaches can effectively
model complex geometric and material features. However,
when highly accurate results are pursued, they normally require
large computer memory and will entail massive CPU time
consumption.

On the other hand, the MoL is regarded as a special discretiza-
tion technique but more efficient in computation as compared
with other regular discretization approaches. For a two-dimen-
sional (2-D) problem, the domain is first partitioned into layers.
Differential equations are then discretized in one direction (the
direction parallel to the interfaces of layers) while solving the
other one analytically. The formulation using the semianalytical
procedure would substantially reduce the number of unknowns
and save a great deal of computing time. However, this method
requires the materials in each layer to be at least piecewise uni-
form along the discretization direction because it uses several
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Fig. 1. Transmission-line structure containing complex geometric/material
features.

straight lines to divide the problem domain. When a complex
structure is involved, this method may not be applicable.

In this paper, a full-wave approach incorporating the FEM
and the MoL (FEM–MoL) is proposed for the analysis of planar
or quasi-planar transmission lines. In the FEM–MoL analysis
of a structure containing complex geometric/material features
(such as the example shown in Fig. 1), the regions containing
complex features (such as nonrectangular metal strips) are in-
vestigated by the FEM. The MoL is then applied to analyze the
regions consisting of simple media with simple geometry (such
as the stratified homogeneous substrate layers). From the field
solutions calculated by the MoL, the boundary conditions over
the boundaries of the complex regions are constructed. After-
wards, the boundary integrals involved in finite-element anal-
ysis can be carried out using these boundary conditions.

In this FEM–MoL analysis, since the complex regions are
modeled by the FEM, advantages associated with the FEM in
simulating complex features are retained. Furthermore, due to
the fact that 2-D discretization of finite-element analysis is em-
ployed only in certain parts of the problem domain while other
parts are handled by one-dimensional (1-D) discretization fol-
lowing the analysis of MoL, this approach is superior to the con-
ventional finite element analysis—in which 2-D discretization
is adopted in the entire problem domain, causing a lower com-
putational efficiency.

The remainder of this paper is organized as follows. Sec-
tion II derives the formulation of the FEM–MoL analysis. In
Section III, the validity of the calculated results is compared
to the existing literature. Also, the computational efficiency of
the proposed approach is discussed. The numerical results for
a number of relevant transmission-line structures are then pre-
sented and discussed. Finally, a brief conclusion of this paper is
presented in Section IV.

II. FORMULATION

To illustrate the procedure of formulating the proposed ap-
proach, the transmission-line structure as shown in Fig. 1 will
be analyzed in this section. As to the structure under investiga-
tion, there appears a selectively etched dielectric substrate and
the metal strips are of arbitrary cross section. Also, the structure
is designed enclosing with rectangular perfect electric walls and

Fig. 2. Discretization schemes for the FEM–MoL analysis of the structure
shown in Fig. 1. The FEM regions are discretized by triangular elements. The
MoL regions are discretized by e-lines and h-lines (solid and dashed vertical
lines in MoL regions).

is assumed to be uniform in the -direction. According to the
complexity of the geometries and materials, the whole structure
is segmented into various regions. Regions , , and , de-
fined in , , and , are composed of
stratified homogeneous dielectric layers. The fields in these re-
gions will be calculated by the MoL. On the other hand, regions

and , defined in and , contain ma-
terials of complex geometry. These regions to be characterized
using complex geometric/material parameters will be modeled
by the FEM.

According to the discretization schemes of FEM and MoL,
the entire problem domain is discretized using several elements
and straight lines, as shown in Fig. 2 (the materials in the struc-
ture are not depicted for clarity). The regions and re-
ferred as the FEM regions and they are discretized by triangular
elements. The regions , , and , which are discretized by
-lines (solid vertical lines) and -lines (dashed vertical lines),

referred as the MoL regions. Also, the interfaces between the
FEM and MoL regions ( , , , and , see Fig. 1)
are denoted by the boundaries ( ). Since we
are interested in modes propagating in the -direction, it is as-
sumed that the time-harmonic dependence and the guided-wave

-dependence of the electromagnetic fields in the structure are
and ), respectively, where is the angular

frequency and is the propagation constant to be determined.
In what follows, Sections II-A and B briefly describe the proce-
dures of FEM and MoL. Section II-C explains how to incorpo-
rate the solutions of MoL into those of FEM, and then system
matrix equations are derived.

A. Finite-Element Matrix of FEM Regions

Referring to the FEM regions in Fig. 2, the electric field in
these regions is governed by the vector Helmholtz equation

(1)

where is the wavenumber in free space and and denote
the relative permittivity and relative permeability of the mate-
rial, respectively. By dividing the electric field into its transverse
( ) and longitudinal ( ) components, ( is
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an unit vector in the -direction), and by adopting the variable
transformation introduced in [20]–[23]

(2)

the Helmholtz equation can be split into its transverse and lon-
gitudinal parts and expressed in terms of the auxiliary variables
( ).

Following the finite-element analysis, the FEM regions are
divided into a number of triangular elements. Within each ele-
ment, the fields and are approximated by a set of first-order
(linear) vectorial and nodal shape functions, respectively, that is,

and . The superscript ( )

denotes the th element. and are the linear shape func-
tions. Also, and are the tangential and nodal unknown
expansion coefficients. Using the finite-element expansions and
applying the weight residual method (WRM) [22]–[24], we then
obtain the following elemental matrix equations:

(3)

where , , , , and are the local ma-
trices resulted from the surface integrations of the quantities in
relation to the shape functions in the weighted residual equa-
tions. The entries of these matrices are available in basic FEM
texts (e.g., [22]–[24]). and are column vectors with
components being the coefficients to and to ,
respectively. Furthermore, the components of the column vec-
tors and are given by the line integrals

(4)

where represents the boundary of the element ( ). The
vector denotes the outward normal unit vector to the boundary

. In (4), the auxiliary fields and are related to the trans-
verse and longitudinal magnetic fields and via the trans-
formation

(5)

where is the intrinsic impedance of free space.
The contributions of the line integrals depend upon the

location of the integration’s contour. There are three situations
that occurred that need to be addressed. First, in case the contour
situates at the left or right electric walls of the enclosure. Second,
when it is shared between two adjacent elements. Third, if
it borders at the interfaces between FEM regions and MoL
regions ( , , , and , in Fig. 2). For the first case,
the line integral would vanish due to the boundary conditions
at the conducting surfaces. As for the second occurrence,
since the outward normal vectors of two adjacent elements are
opposite, the contributions resulting from the two elements
would annihilate each other when they are assembled. Only

Fig. 3. Illustration of the discretization over the boundary � . The solid and
dashed lines in region L1 are e-lines and h-lines, respectively.

the line integrals of the third case should be included in the
final equations. Therefore, the presence of the line integral
vectors and are required only if the element ( ) has
an edge bordering at the boundary , . In this
scenario, the line integrals over the closed contour can be
replaced by those integrated along the edge on the boundary.

To evaluate the line integrals associated with , let us con-
sider the element ( ) shown in Fig. 3. The element ( ) has an
edge located at the boundary . Two endpoints of edge are
numbered as nodes and . Since the outward normal vector

on edge is , only and (the tangential components
of field) are needed to perform the line integral (4) over the
edge. Using the linear finite element expansions with respect to
the electric fields in element ( ) along with the Maxwell equa-
tions, one can approximate on edge to be a constant ,
whereas to be and at nodes and with linear
variation along the edge. The fields and at edge are
then written as

(6)

where and are the nodal shape functions relative to
the nodes and of the element ( ).

Substituting (6) into (4) and using the features of the linear
shape functions ( and directed along the -direction
at edge , and vanishes along edge ), the line integral
vectors of the element ( ) ( and ) can be evaluated
by performing the integrals over edge , to be expressed as

(7)

where is the length of edge . In (7), the vector is
referred as to indicate that it results from the field at
edge . The elemental matrix equations of the element ( ) are
then obtained by (3) and (7). Also note that in the element ( ),
the expansion coefficient represents the field
along edge , while and represent at nodes
and .
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For other elements which have an edge adjacent to the
boundary , and those that have an edge bordering at the
boundary , , or , a similar treatment can be applied to
calculate the elemental matrix equations. Finally, by assem-
bling the contributions from all the elements, we can obtain a
system equation for the FEM regions

(8)

where the submatrices and are
the surface (line) integral matrices assembled from the contri-
butions of the elements in the regions and , respectively.
The vectors and represent the unknown expan-
sion coefficients of field in the interior of regions and .
Also, the vector and ( ) stand for the tan-
gential components ( and components) of field and field
at the boundary . and are written as

(9)

where the vectors and represent the values of the
fields and at the nodes, and and represent those
of the fields and along the line segments (edges) at .

In the system of (8), the number of unknowns is larger than
that of equations (due to the presence of unknowns ). Also,
the unknowns are only associated with some parts (the FEM
regions) of the whole problem domain. To take other parts (the
MoL regions) into consideration, we next utilize the MoL to cal-
culate the fields in the MoL regions. Another set of equations,
which correlate with , will be formulated using the so-
lutions obtained from the MoL.

B. Field Equations of MoL Regions

The MoL regions in Fig. 1 are composed of stratified homo-
geneous dielectric layers. These multilayered structures can be
efficiently analyzed using the MoL. The procedure for applying
the MoL to multilayered structures has been discussed much in
the literature. According to the formulation of this technique,
the problem domain of a multilayered structure under analysis
is discretized in the -direction by several -lines and -lines
(see the discretization schemes for the MoL regions shown in
Fig. 2). The field components , , and are then sam-
pled at the -lines, whereas , , and are sampled at the

-lines. By applying several mathematical transformations, the
fields in each dielectric layer of the structure are transformed
into the transform domain, which can be evaluated analytically
at the discrete lines [25].

With the field solutions, the transformed tangential fields
( and ) at the lower and the upper interfaces of an
arbitrary dielectric layer are related by

(10)

with , ,
. Here we use the subscripts and to denote,

respectively, the lower and the upper interfaces of the investi-
gated layer. The transfer matrices and are defined the
same as those in [25].

Using the continuity conditions of the tangential fields at the
interfaces of adjacent layers, the field equations (10) of each
layer are combined to correlate the tangential fields at the top
boundary of the multilayered structure with those at the bottom
boundary. This leads to the following equations:

(11)

The interface matrices ( ) can be readily
calculated by a simple recurrence manipulation of the transfer
matrices ( and in (10)) for each layer [25]. The subscripts

and denote the bottom and the top boundaries of the
multilayered structure.

The field equations (11) describe the boundary conditions at
the bottom and the top boundaries of a multilayered structure.
It is worth noting that the interface matrices are composed
by four (quasi-)diagonal matrices. Minimal computing time and
computer memory are required by this formulation. Applying
MoL to investigating the MoL regions, one obtains the field
equations (11) for the regions , , and . The boundary
conditions at the boundaries , , can be then
formulated from these field equations.

Before the end of this subsection, it should be pointed out that
in the FEM–MoL approach, the discretization schemes for the
MoL regions, that is, the positions ( -coordinates) of the -lines
and -lines, are based on the FEM meshing on the boundaries

. The discretization applied in region is explained here as
an example. As seen in Fig. 3, the interface between regions

and (boundary ) is divided into several line segments
by finite element discretization in region . The -lines and

-lines are placed, respectively, at the positions of endpoints and
midpoint on each line segment to divide the domain of region

. As illustrated in the following, this discretization schemes
would appropriately incorporate the field equations of the MoL
regions into the system equation of FEM regions. Similar dis-
cretization schemes can be applied to the regions and . A
nonequidistant discretization may be required in the analysis of
MoL. In such a case, suitable normalization manipulations [25]
should be employed in the analysis.
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C. System Equations of the Whole Structure

After obtaining the field equation (11) for all MoL regions,
the boundary conditions at the bottom and the top metal shield-
ings of the structure are inserted into (11) for regions and

, respectively. Transforming the field equations back into the
spatial domain, the boundary conditions at the boundaries are
determined, which can be expressed in the form

(12)

The matrices , , and are cal-
culated from the inverse transforming of the interface matrices
( in (11)) associated with the region . The vectors
and ( ) are related to the tangential fields at
the boundary with

(13)

Since the field components and are sampled at -lines,
it is clear from the discretization schemes for the MoL regions
that the components of the vectors and represent
the fields and at the nodes on (the intersections of
-lines and ). Similarly, the fields and are sampled at
-lines, the components of the vectors and thus

denote the fields and at the middle points of the line
segments, or the fields along the line segments, on .

Next, using the variable transformation (2) and (5), the tan-
gential fields and at the boundaries (which are
represented by the vectors and (13) in the MoL anal-
ysis) are transformed into the auxiliary variables and
(which are represented by the vectors and (9) in the
FEM analysis). The vectors and can then be expressed
in terms of vectors and as

(14)

where is the unit matrix. Substituting (12) and (14) into (8),
we finally obtain the following nonstandard eigenvalue equation
to the problem:

(15)

In order to get nontrivial solutions for the coefficient vector ,
the determinant of system matrix should be zero. By solving
the determinantal equation via various root searching algorithms
such as the Muller’s method or the singular value decomposition
technique [26], the propagation constants are obtained. With

already known, all guided fields are explicitly calculable, and
other electric characteristics (e.g., the impedance) can be further
computed.

Fig. 4. Normalized propagation constant as a function of frequency for a thick
microstrip structure. Structural parameters are A = 10:0 mm, B = 6:985 mm,
w = 3:0 mm, h = 0:635mm, t = 0:3 mm, and " = 9:8. Lines: FEM–MoL
approach. Dots: Alam et al. [7].

In the FEM–MoL analysis of this example, the problem do-
main is segmented into two FEM and three MoL regions. For
the analysis of a more complex structure, additional FEM and
MoL regions can be applied. The equations of the FEM regions
and those of the MoL regions can be combined using the pro-
cedure described above to acquire the system equations to the
problem.

III. NUMERICAL RESULTS

In this section, the numerical results for a variety of transmis-
sion-line structures are presented. For all examples considered,
the media are assumed lossless, isotropic, and nonmagnetic
( ). Also, nonuniform discretization schemes that re-
finedly discrete the areas in which the fields can change rapidly
by smaller elements and/or closer spaced lines are employed
in the analyses.

To validate the proposed formulation, a thick microstrip struc-
ture with rectangular or trapezoidal metallization cross section
(see the inset of Fig. 4) is investigated to compare our results
with those available in the existing literature. Fig. 4 shows the
propagation characteristics of the rectangular strip ( )
and those of the trapezoidal ones ( and 135 ). The re-
sults obtained from our approach (represented by the solid lines)
are in excellent agreement with those calculated by Alam et
al.using a standard finite-element approach [7] (marked by the
dots). In the FEM–MoL analysis, the FEM region is defined in

, i.e., the layer containing the metal strip. The sub-
strate layer and the air layer above the metal strip

are defined as MoL regions. Note that the
FEM region (which is handled by 2-D discretization) occupies
only about 4.29% of the whole problem domain. It is expected
that the computational performance of the proposed approach
would be much more efficient than that of the conventional fi-
nite element method (in which 2-D discretization is adopted to
the entire problem domain).

In order to investigate the computational performance of the
FEM–MoL analysis, the convergence property of this technique
in analyzing the microstrip structure with rectangular metal strip
considered in Fig. 4 at 20 GHz is examined and compared with
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Fig. 5. Convergence properties of the normalized propagation constants
computed by the FEM–MoL and conventional FEM analyses. The structure
under test is the microstrip structure with a rectangular metal strip shown in
Fig. 4 at 20 GHz. The number of divisions in the x -direction N is 78 for all
three analyses.

that of the conventional FEM. Two FEM–MoL formulations,
referred as FEM–MoL I and FEM–MoL II, are implemented in
the convergence study to reveal the flexibility of this method. In
FEM–MoL I, the problem domain is segmented into one FEM

and two MoL ( and )
regions. While in FEM–MoL II, two FEM (
and ) and three MoL ( , , and

) regions are used. The conventional FEM can be
treated as a special FEM–MoL implementation of which the
whole problem domain is defined as the FEM region since it
uses the finite element method to handle the whole structure. In
the calculation, the FEM regions of each implementation are
first divided into rectangular elements, where
and are the number of divisions in the - and -directions.
Each rectangular element is later divided into two triangular el-
ements. The MoL regions (for FEM–MoL I and II analyses) are
then discretized by lines according to the discretizing procedure
stated in Section II-B. Under these discretization schemes, the
number of variables computed in the FEM–MoL I, II, and the
conventional FEM are, respectively, ,

, and
(including the variables associated with the fields on the metal
strip, which can be excluded when the strip is treated as a PEC).

Fig. 5 presents the convergence curves of the normalized
propagation constants as a function of . The data of these
three implementations are calculated using the same -direction
discretization pattern with (which has been found
to be large enough to achieve the convergence with respect
to for all three analyses). As can be seen in the graph,
the curves of the three analyses converge to the same value

. However, the FEM–MoL technique requires
fewer -direction divisions to converge the data than does the
conventional FEM. The converged result is achieved with at
least 11 -direction divisions through the conventional FEM,
whereas the same result can be obtained by the FEM–MoL I
using only three -direction divisions. This clearly indicates
that a much fewer number of variables are needed to obtain
an accurate result by using the FEM–MoL technique. In this

Fig. 6. Membrane-supported microstrip line.

example, the number of variables computed in the FEM–MoL
I after eliminating those on the metal strip is about 20% of that
in the conventional FEM. Due to the decrease of the number
of variables, the computing time is reduced. Nevertheless,
it should be mentioned that in the conventional FEM the
problem can be formulated as a standard eigenvalue problem
with the propagation constant being the eigenvalue, whereas
the FEM–MoL approach will result in a determinantal matrix
equation since the propagation constant cannot be factored
from the matrices accounted for the MoL regions. Also, unlike
the finite-element analysis that would lead to a sparse matrix,
the system matrix resulting from the FEM–MoL technique is
partly sparse and partly full. Some efficient matrix techniques
[20], [24] that are usually adopted in the finite-element analysis
to improve the computational efficiency would be therefore no
longer applicable in the FEM–MoL technique.

In the following, a microstrip line with an air cavity under-
neath the supporting membrane is considered. The configura-
tion of the membrane-supported microstrip line is illustrated
in Fig. 6, where an air cavity is etched on a silicon substrate
using micromachining techniques [9], [10], [12], [17]. The side-
walls of the cavity are aligned to the silicon crystal planes
with the sidewall angle being 54.7 [12]. In the FEM–MoL
analysis of this structure, the region containing the air cavity

and that containing the metal strip
are defined as the FEM regions. Other

parts of the structure are specified as the MoL regions.
Fig. 7 presents the effective dielectric constants of the mem-

brane-supported microstrip line. The results obtained from the
case without an air cavity ( ) are also presented in Fig. 7
for comparison. The arrows along with the plot are used to
indicate the increase of cavity depth . The increment of either
the cavity width or the depth results in the reduction of
the effective dielectric constants because the electric field in
the silicon substrate is reduced. Furthermore, the air cavity is
observed to improve the dispersive propagation characteristics
of the microstrip. The dependence of the propagation charac-
teristics on frequency decreases apparently as the cavity size
( or ) is increased. In the case of , the effective
dielectric constants are nearly independent to the operating
frequency, indicating that the membrane-supported lines have
almost zero dispersion. Although not shown here, it has also
been found that when the cavity width increases to an extent
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Fig. 7. Effective dielectric constant as a function of frequency for a
membrane-supported microstrip line. Structural parameters are in Fig. 6,
A = 1:2 mm, w = 0:2 mm, h = 0:3 mm, h = 0:005 mm, t = 0:001 mm,
B = 0:605 mm, " = 11:7, " = 4, and � = 54:7 .

Fig. 8. Micromachined coplanar waveguide.

larger than the strip width at a given cavity depth , the
effective dielectric constant tends to converge to a stable value.
When is larger than , the effective dielectric constant
remains nearly unchanged after further increase in . This
reflects the fact that most of the fields concentrate in the region
underneath the strip.

As a final example, let us consider a micromachined coplanar
waveguide [13], [17] packaged in a metallic enclosure. Fig. 8
depicts the structure to be studied. In this line, the silicon mate-
rials in area underneath the apertures between the conductors
are removed by wet etching using EDP (anisotropic etch) or
HF/Nitric (isotropic etch) [9], [10], [13], [17]. As a result, an
air groove is formed below the aperture. The sidewall angle of
the air groove is 54.7 . In the FEM–MoL analysis, the FEM
and MoL regions are, respectively, defined in
and .

Since the electric fields concentrate in the apertures be-
tween the conductors, the removal of the materials underneath
the apertures would lower the effective dielectric constant.
Furthermore, the lower effective dielectric constant can lead
to a lower line capacitance that increases the characteristic
impedance [17]. Figs. 9 and 10 demonstrate the influence of the

Fig. 9. Effective dielectric constant as a function of groove depth for a
micromachined coplanar waveguide. Structural parameters are in Fig. 8,
A = 0:32 mm, B = 0:5 mm, w = 0:05 mm, s = 0:045 mm, h = 0:3 mm,
t = 0:001 mm, " = 11:7, and � = 54:7 .

Fig. 10. Characteristic impedance as a function of groove depth for a
micromachined coplanar waveguide. Structural parameters are in Fig. 8,
A = 0:32 mm, B = 0:5 mm, w = 0:05 mm, s = 0:045 mm, h = 0:3 mm,
t = 0:001 mm, " = 11:7, and � = 54:7 .

air grooves on the effective dielectric constant and the charac-
teristic impedance, respectively. In both figures, the solid lines
represent the results for the cases of the groove with trapezoidal
cross sections (isotropically etched profile), and the dashed
line represents those for the cases of the triangular groove
(anisotropically etched profile). There are three isotropic cases
with different groove widths ( , , and ) to be
considered here. Also, the groove width for the anisotropic
case depends on the groove depth with an angle of 54.7 .

For the cases of trapezoidal groove, it can be seen that the
effective dielectric constant decreases and the characteristic
impedance increases with increasing groove depth . When
the depth approaches the limit value of ,
the characteristic values tend to converge to those relating to
the case of triangular groove. Also, it is noticed that when the
groove width is larger than the aperture width , the charac-
teristic values would change drastically as the groove depth
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increases by a small amount from . In regard to the cases
of triangular groove, the effective dielectric constant decreases
and the characteristic impedance increases monotonously when
the depth (thus the width) of the groove is enlarged.

IV. CONCLUSION

A full-wave approach incorporating the FEM and the MoL
has been presented to efficiently analyze a planar or quasi-planar
transmission-line structure containing complex geometric/ma-
terial features. In this work, when a transmission-line structure
is analyzed, the complex regions in the structure are modeled by
the FEM, while the simple regions are analyzed using the MoL.
Using the field solutions obtained from the MoL, the boundary
conditions are constructed and utilized to carry out the boundary
integrals involved in finite-element analysis. It not only retains
the major advantage of finite element method in modeling com-
plex structures but also is more efficient than the conventional
finite element analysis. The validity of the present approach was
confirmed by conducting the comparative study as well as the
convergence analysis. Moreover, good computational efficiency
of this method was observed from the convergence property of
this method. Finally, the propagation characteristics of mem-
brane-supported microstrip lines and micromachined coplanar
waveguides were also investigated and demonstrated with satis-
factory applicability.
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